Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
ACS Appl Mater Interfaces ; 16(8): 10590-10600, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343039

RESUMO

To inhibit viral infection, it is necessary for the surface of polypropylene (PP), a polymer of significant industrial relevance, to possess biocidal properties. However, due to its low surface energy, PP weakly interacts with other organic molecules. The biocidal effects of quaternary ammonium compounds (QACs) have inspired the development of nonwoven PP fibers with surface-bound quaternary ammonium (QA). Despite this advancement, there is limited knowledge regarding the durability of these coatings against scratching and abrasion. It is hypothesized that the durability could be improved if the thickness of the coating layer were controlled and increased. We herein functionalized PP with three-dimensionally surface-grafted poly(N-benzyl-4-vinylpyridinium bromide) (PBVP) by a simple and rapid method involving graft polymerization and benzylation and examined the influence of different factors on the antiviral effect of the resulting plastic by using a plaque assay. The thickness of the PBVP coating, surface roughness, and amount of QACs, which jointly determine biocidal activity, could be controlled by adjusting the duration and intensity of the ultraviolet irradiation used for grafting. The best-performing sample reduced the viral infection titer of an enveloped model virus (bacteriophage ϕ6) by approximately 5 orders of magnitude after 60 min of contact and retained its antiviral activity after surface polishing-simulated scratching and abrasion, which indicated the localization of QACs across the coating interior. Our method may expand the scope of application to resin plates as well as fibers of PP. Given that the developed approach is not limited to PP and may be applied to other low-surface-energy olefinic polymers such as polyethylene and polybutene, our work paves the way for the fabrication of a wide range of biocidal surfaces for use in diverse environments, helping to prevent viral infection.


Assuntos
Polipropilenos , Polivinil , Compostos de Piridínio , Compostos de Vinila , Viroses , Humanos , Polipropilenos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Polímeros/farmacologia , Antivirais/farmacologia
2.
Int J Lab Hematol ; 46(3): 531-537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284282

RESUMO

INTRODUCTION: In addition to traditional means, topical haemostatics are currently used to avoid haemorrhage during surgery. Although they have been reported to be effective, there is a low level of proof of their clinical efficacy, which is at odds with their levels of use. This study used two methods to better understand their in vitro mechanism of action. METHODS: Two clinical biology assays were used to measure the action of topical haemostatics on primary and secondary haemostasis. Calibrated samples of collagen sponges and polypropylene non-woven gauze were tested. Platelet aggregation was assessed using a multichannel aggregometer. A thrombin generation assay (TGA) was used with a fluorogenic readout. Tissue factor solutions were used to activate coagulation. RESULTS: In terms of primary haemostasis, collagen sponges stimulated platelet aggregation, in particular between 2 and 5 min after incubation with platelet-rich plasma and with no dose effect. In regard to coagulation, the kinetics of thrombin generation was enhanced. Polypropylene non-woven gauze did not exhibit any effect on platelet aggregation, although it did have a weak effect on the kinetics of thrombin generation. CONCLUSION: Collagen is well known to exert a haemostatic effect due to its action on platelet aggregation. By contrast, polypropylene non-woven gauze has not been shown to have any effect on platelet aggregation other than a minor impact on thrombin generation. The results obtained with the devices tested are in agreement with the literature. Platelet aggregation biological assays and TGA measurements appear to be suitable for evaluation of these medical products.


Assuntos
Administração Tópica , Hemostasia , Hemostáticos , Agregação Plaquetária , Trombina , Humanos , Hemostáticos/farmacologia , Hemostasia/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Trombina/farmacologia , Colágeno/farmacologia , Polipropilenos/farmacologia
3.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198713

RESUMO

The global COVID-19 pandemic has led to an increase in the importance of implementing effective measures to prevent the spread of microorganisms. Consequently, there is a growing demand for antimicrobial materials, specifically antimicrobial textiles and face masks, because of the surge in diseases caused by bacteria and viruses like SARS-CoV-2. Face masks that possess built-in antibacterial properties can rapidly deactivate microorganisms, enabling reuse and reducing the incidence of illnesses. Among the numerous types of inorganic nanomaterials, copper oxide nanoparticles (CuO NPs) have been identified as cost-effective and highly efficient antimicrobial agents for inactivating microbes. Furthermore, biosurfactants have recently been recognized for their potential antimicrobial effects, in addition to inorganic nanoparticles. Therefore, this research's primary focus is synthesizing biosurfactant-mediated CuO NPs, integrating them into natural and synthetic fabrics such as cotton and polypropylene and evaluating the resulting fabrics' antimicrobial activity. Using rhamnolipid (RL) as a biosurfactant and employing a hydrothermal method with a pH range of 9-11, RL-capped CuO NPs are synthesized (RL-CuO NPs). To assess their effectiveness against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) microorganisms, the RL-CuO NPs are subjected to antibacterial testing. The RL-capped CuO NPs exhibited antimicrobial activity at much lower concentrations than the individual RL, CuO. RL-CuO NPs have shown a minimum inhibitory concentration (MIC) of 1.2 mg ml-1and minimum bactericidal concentration (MBC) of 1.6 mg ml-1forE. coliand a MIC of 0.8 mg ml-1and a MBC of 1.2 mg ml-1forS. aureus, respectively. Furthermore, the developed RL-CuO NPs are incorporated into cotton and polypropylene fabrics using a screen-printing technique. Subsequently, the antimicrobial activity of the coated fabrics is evaluated, revealing that RL-CuO NPs coated fabrics exhibited remarkable antibacterial properties against both gram-positive and gram-negative bacteria.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Polipropilenos/farmacologia , Pandemias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Nanopartículas/química , Têxteis , Nanopartículas Metálicas/química , Cobre/farmacologia , Cobre/química
4.
ACS Appl Mater Interfaces ; 15(50): 58151-58165, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38063494

RESUMO

Cancer stem cells (CSCs) present a formidable challenge in cancer treatment due to their inherent resistance to chemotherapy, primarily driven by the overexpression of ABC transporters and multidrug resistance (MDR). Despite extensive research on pharmacological small-molecule inhibitors, effectively managing MDR and improving chemotherapeutic outcomes remain elusive. On the other hand, magnetic hyperthermia (MHT) holds great promise as a cancer therapeutic, but there is limited research on its potential to reverse MDR in breast CSCs and effectively eliminate CSCs through combined chemo-hyperthermia. To address these gaps, we developed tumor microenvironment-sensitive, drug-loaded poly(propylene sulfide) (PPS)-coated magnetic nanoparticles (PPS-MnFe). These nanoparticles were employed to investigate hyperthermia sensitivity and MDR reversion in breast CSCs, comparing their performance to that of small-molecule inhibitors. Additionally, we explored the efficacy of combined chemo-hyperthermia in killing CSCs. CSC-enriched breast cancer cells were subjected to low-dose MHT at 42 °C for 30 min and then treated with the chemical MDR inhibitor salinomycin (SAL). The effectiveness of each treatment in inhibiting MDR was assessed by measuring the efflux of the MDR substrate, rhodamine 123 (R123) dye. Notably, MHT induced a prolonged reversal of MDR activity compared with SAL treatment alone. After successfully inhibiting MDR, the breast CSCs were exposed to chemotherapy using paclitaxel to trigger synergistic cell death. The combination of MHT and chemotherapy demonstrated remarkable reductions in stemness properties, MDR reversal, and the effective eradication of breast CSCs in this innovative dual-modality approach.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Polipropilenos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resistência a Múltiplos Medicamentos , Células-Tronco Neoplásicas/patologia , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Colloids Surf B Biointerfaces ; 230: 113518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690226

RESUMO

Development of an inflammation modulating polypropylene (PP) mesh in pelvic floor repair is an urgent clinical need. This is because PP mesh for pelvic floor repair can cause a series of complications related to foreign body reactions (FBR) in postoperative period. Therefore, we successfully prepared PP composite mesh that can scavenge reactive oxygen species (ROS) and inhibit inflammation to moderate FBR by a simple method. First, a pregel layer was formed on PP mesh by dip coating. Among them, polyurethane with polythioketal (PTK) is an excellent ROS scavenger, and dopamine methacrylamide (DMA) improves the stability of the coating and synergistically scavenges ROS. Then, a composite mesh (optimal PU50-PP) was obtained by photopolymerization. The results showed that the polyurethane gel layer was able to scavenge more than 90% of free radicals and about 75% of intracellular ROS. In vitro, PU50-PP mesh significantly scavenged ROS and resisted macrophage adhesion. After implantation in the posterior vaginal wall of rats, PU50-PP eliminated 53% of ROS, inhibited inflammation (decreased IL-6, increased IL-10), and dramatically reduced collagen deposition by about 64%, compared to PP mesh. Thus, the composite PP mesh with ROS scavenging and anti-inflammatory properties provides a promising approach for mitigating FBR.


Assuntos
Polipropilenos , Poliuretanos , Animais , Ratos , Feminino , Polipropilenos/farmacologia , Poliuretanos/farmacologia , Espécies Reativas de Oxigênio , Telas Cirúrgicas , Diafragma da Pelve , Reação a Corpo Estranho , Inflamação/tratamento farmacológico , Anti-Inflamatórios
6.
Plant Physiol Biochem ; 201: 107811, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37307719

RESUMO

Microplastics and di-2-ethylhexyl phthalate (DEHP) are prevalent and emerging pollutants in agro-ecosystem, raising concerns due to their widespread co-presence. Nevertheless, their combined toxicity on terrestrial plants remains largely unexplored. This study investigated the impact of polypropylene microplastics (MPs), DEHP, and their mixture on the physiological and biochemical characteristics of cucumber seedlings. The changes of membrane stability index (MSI), antioxidase activities, photosynthetic pigments and chlorophyll fluorescence in cucumber seedlings were assessed. The results demonstrated that MPs alone significantly inhibited MSI, photosynthetic pigments (Chl a, Chl b, and Chl a + b), Fm and qp of cucumber seedlings, and significantly promoted the carotene content and antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in cucumber seedlings. While DEHP alone significantly inhibited MSI and photosynthetic pigments of cucumber seedlings, and significantly promoted antioxidant enzyme activities in cucumber seedlings. Moreover, the combined toxicity of MPs and DEHP was found to be less pronounced than that of the single action of MPs and DEHP. The interaction between DEHP and MPs may contribute to the reduced toxicity. Abbott's modeling revealed that the combined toxicity systems were all antagonistic (RI < 1). Two-factor analysis and principal component analysis further confirmed that the treatment of MPs alone contributed the most to the toxicological effects of the physiological properties of cucumbers. In summary, this study highlighted the importance of understanding the combined effects of MPs and DEHP on plant physiology, providing insights for the development of effective treatments for emerging pollutants in agricultural ecosystems.


Assuntos
Cucumis sativus , Dietilexilftalato , Poluentes Ambientais , Cucumis sativus/fisiologia , Antioxidantes/farmacologia , Microplásticos/farmacologia , Plásticos , Polipropilenos/farmacologia , Ecossistema , Dietilexilftalato/farmacologia , Plântula
7.
J Mater Chem B ; 11(23): 5101-5107, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37221892

RESUMO

In this study, we examined the modification of polypropylene non-woven fabrics (PP NWFs) via a one-step oxidation treatment using photo-activated chlorine dioxide radicals (ClO2˙). The oxidised PP NWFs exhibited excellent antibacterial activity against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The mound structure and antibacterial activity in the modified PP NWFs disappeared upon washing with a polar organic solvent. After washing, nanoparticles of around 80 nm in diameter were observed in the solution. The results of several mechanistic studies suggest that nanoparticles can contribute to the antimicrobial activity of oxidised PP NWFs.


Assuntos
Polipropilenos , Têxteis , Polipropilenos/farmacologia , Polipropilenos/química , Têxteis/microbiologia , Óxidos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
8.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047593

RESUMO

Graphene oxide (GO), derived from graphene, has remarkable chemical-physical properties such as stability, strength, and thermal or electric conductivity and additionally shows antibacterial and anti-inflammatory properties. The present study aimed to evaluate the anti-inflammatory effects of polypropylene suture threads buttons (PPSTBs), enriched with two different concentrations of GO, in the modulation of the inflammatory pathway TLR4/MyD 88/NFκB p65/NLRP3 induced by the Escherichia coli (E. coli) lipopolysaccharide (LPS-E). The gene and the protein expression of inflammatory markers were evaluated in an in vitro model of primary human gingival fibroblasts (hGFs) by real-time PCR, western blotting, and immunofluorescence analysis. Both GO concentrations used in the polypropylene suture threads buttons-GO constructs (PPSTBs-GO) decreased the expression of inflammatory markers in hGFs treated with LPS-E. The hGFs morphology and adhesion on the PPSTBs-GO constructs were also visualized by inverted light microscopy, scanning electron microscopy (SEM), and real-time PCR. Together, these results suggest that enriched PPSTBs-GO modulates the inflammatory process through TLR4/MyD 88/NFκB p65/NLRP3 pathway.


Assuntos
Grafite , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Grafite/farmacologia , Grafite/metabolismo , Escherichia coli/metabolismo , Polipropilenos/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Anti-Inflamatórios/farmacologia , Suturas , Fibroblastos/metabolismo
9.
Aquat Toxicol ; 259: 106540, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062245

RESUMO

The occurrence of accumulation of microplastics in humans and wildlife has become a serious concern on a global scale, especially in the last decade. Although there are many studies on microplastics, their biological effects and toxicity on freshwater fish have not been fully revealed. In order to evaluate the potential toxic effects of PP (polypropylene) microplastics in freshwater fish, we performed 1-day, 2-day, 3-day, 4-day, 5-day, 6-day, and 7-day microplastic exposure to different concentrations of the microplastics through water and diet on Cyprinus carpio. Fish samples were divided into 3 groups; Group-A with different PP microplastic concentrations in their water (ALow:1.0 g/L and AHigh:2.5 g/L), Group-B with different PP microplastic concentrations in their diet (BLow:100 mg/g and BHigh:250 mg/g), and Group-C (Control group) free of PP microplastics in their diet and water. The results showed that although microplastics did not cause death in C. carpio, they caused oxidative stress in comparing the MP exposed groups to the control groups. When indices of oxidative stress of fish individuals in all treatment groups were compared with the control group, it was determined that MDA (malondialdehyde) and GSH (glutathione) levels increased, while TPC (total protein content) and CAT (catalase) levels decreased depending on the concentrations and exposure times. Significant differences were observed between the control and treatment groups in the indices of oxidative stress (P<0.05). This study provided basic toxicological data to elucidate and quantify the effects of PP microplastics on freshwater fish. In addition, this study is the first study to indicate that microplastic exposure of carp via diet and water causes oxidative stress in gill tissues and causes changes in CAT, MDA, GSH, and TPC levels. The findings also provide useful reference data for improving knowledge of the effects of microplastics on organisms in freshwater systems.


Assuntos
Carpas , Poluentes Químicos da Água , Humanos , Animais , Microplásticos/metabolismo , Antioxidantes/metabolismo , Plásticos , Polipropilenos/metabolismo , Polipropilenos/farmacologia , Carpas/metabolismo , Água/farmacologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Dieta
10.
Nanoscale ; 15(16): 7384-7402, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36751724

RESUMO

Magnetic nanoparticle (MNP) delivery systems are promising for targeted drug delivery, imaging, and chemo-hyperthermia of cancer; however, their uses remain limited primarily due to their toxicity associated with reactive oxygen species (ROS) generation, targeted delivery, and biodegradation. Attempts employing polymer coatings to minimize the toxicity, along with other challenges, have had limited success. We designed a novel yet generic 'one-for-all' polypropylene sulphide (PPS) coated magnetic nano-delivery system (80 ± 15 nm) as a multi-faceted approach for significant biocompatibility improvement, loading of multiple drugs, ROS-responsive delivery, and combined chemo-hyperthermia therapy for biomedical applications. Three distinct MNP systems (15 ± 1 nm) were fabricated, coated with PPS polymer, and investigated to validate our hypothesis and design. Simultaneous degradation of MNPs and PPS coatings with ROS-scavenging characteristics boosted the biocompatibility of MNPs 2-3 times towards non-cancerous fibroblasts (NIH3T3) and human epithelial cells (HEK293). In an alternating magnetic field, PPS-MNPs (MnFe) had the strongest heating characteristics (SAR value of 240 W g-1). PPS-MNP drug-loaded NPs were efficiently internalised into cells and released 80% of the drugs under tumor microenvironment-mimicking (pH 5-7, ROS) conditions, and demonstrated effective chemo-hyperthermia (45 °C) application for breast cancer cells with 95% cell death in combined treatment vs. 55% and 30% cell death in only hyperthermia and chemotherapy respectively.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Animais , Camundongos , Humanos , Polipropilenos/farmacologia , Nanopartículas de Magnetita/uso terapêutico , Espécies Reativas de Oxigênio , Células HEK293 , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Microambiente Tumoral
11.
Colloids Surf B Biointerfaces ; 218: 112772, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985128

RESUMO

This study developed, a novel polypropylene (PP) mesh combined with poly (L-lactic acid) (PLA) electrospun nanofibers loaded sirolimus (SRL). The PP mesh was combined with PLA/SRL (1/0, 1/0.01, 1/0.02; mass ratios) composed electrospun membrane characterized by FTIR spectroscopy, XPS and SEM, and evaluated for cytocompatibility in vitro. In an in vivo study, a total of 84 Sprague-Dawley rats were employed to evaluate the efficacy of the novel composite PP mesh anti-adhesion, mechanical properties and inflammation. As a results, the PLA/SRL membrane could compound with PP mesh stably and load SRL. Although tensile testing showed that the mechanical properties of composite mesh decreased in vivo, the integration strength between the tissue and mesh was still able to counteract intra-abdominal pressure. Compared with the native PP mesh group, the novel PP mesh group showed a lower score for abdominal adhesion and inflammation. More importantly, the novel PP mesh completely integrated with the abdominal wall and had sufficient mechanical strength to repair abdominal wall defects.


Assuntos
Herniorrafia , Polipropilenos , Animais , Herniorrafia/métodos , Inflamação/tratamento farmacológico , Ácido Láctico/química , Poliésteres , Polipropilenos/química , Polipropilenos/farmacologia , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Telas Cirúrgicas , Aderências Teciduais/tratamento farmacológico
12.
Ultrasound Med Biol ; 48(9): 1888-1898, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798625

RESUMO

The aim of this research was to explore the interaction between ultrasound-activated microbubbles (MBs) and Pseudomonas aeruginosa biofilms, specifically the effects of MB concentration, ultrasound exposure and substrate properties on bactericidal efficacy. Biofilms were grown using a Centre for Disease Control (CDC) bioreactor on polypropylene or stainless-steel coupons as acoustic analogues for soft and hard tissue, respectively. Biofilms were treated with different concentrations of phospholipid-shelled MBs (107-108 MB/mL), a sub-inhibitory concentration of gentamicin (4 µg/mL) and 1-MHz ultrasound with a continuous or pulsed (100-kHz pulse repetition frequency, 25% duty cycle, 0.5-MPa peak-to-peak pressure) wave. The effect of repeated ultrasound exposure with intervals of either 15- or 60-min was also investigated. With polypropylene coupons, the greatest bactericidal effect was achieved with 2 × 5 min of pulsed ultrasound separated by 60 min and a microbubble concentration of 5 × 107 MBs/mL. A 0.76 log (83%) additional reduction in the number of bacteria was achieved compared with the use of an antibiotic alone. With stainless-steel coupons, a 67% (0.46 log) reduction was obtained under the same exposure conditions, possibly due to enhancement of a standing wave field which inhibited MB penetration in the biofilm. These findings demonstrate the importance of treatment parameter selection in antimicrobial applications of MBs and ultrasound in different tissue environments.


Assuntos
Microbolhas , Pseudomonas aeruginosa , Acústica , Antibacterianos/farmacologia , Biofilmes , Impedância Elétrica , Gentamicinas/farmacologia , Polipropilenos/farmacologia , Aço Inoxidável/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-35460912

RESUMO

Microfibers are widespread environmental pollutants introduced to the soil environment because of the increasing use of plastic polymers. However, research on the soil ecotoxicity of microfibers is limited, especially when compared to research on their aquatic toxicity. This study investigated the effects of sub-chronic microfiber exposure on the earthworm Eisenia andrei. We compared the effects of three types of microfibers: short lyocell microfibers (231 ± 126 µm long), short polypropylene microfibers (191 ± 107 µm long), and long polypropylene microfibers (891 ± 141 µm long). After exposure for 21 days, earthworm survival, coelomocyte viability, cast microbial viability, and gut microbial viability were assessed, and a histopathological examination of the digestive tract and reproductive tissues was conducted. In addition, long polypropylene microfibers egested by the earthworms were collected to explore the possibility of earthworm-driven biofragmentation. Results indicated that high exposure concentration (1000 mg/kg dry soil) negatively affected earthworm coelomocytes and intestinal tissue, gut, and cast microbiomes. Although all three microfiber types reduced earthworm survival, the short polypropylene microfibers were more toxic to the earthworms than the long polypropylene microfibers or short lyocell microfibers, which indicated that size-dependent soil ecotoxicity was induced. PP microfibers were found to more negatively affect cast microbial activity and intestinal tissue than lyocell microfibers, indicating polymer-dependent soil ecotoxicity potential against earthworm species. This study provides evidence that synthesized microfibers cause cytotoxicity and decrease gut microbiome viability in earthworms, and that they can be biofragmented by earthworms.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Polímeros , Polipropilenos/farmacologia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
14.
J Mater Chem B ; 10(19): 3759-3769, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35467687

RESUMO

The hydrophobicity and inertness of the polypropylene (PP) material surface usually lead to serious biofouling and bacterial infections, which hamper its potential application as a biomedical polymer. Many strategies have been developed to improve its antifouling or antibacterial properties, yet designing a surface to achieve both antifouling and antibacterial performances simultaneously remains a challenge. Herein, we construct a dual-function micropatterned PP surface with antifouling and antibacterial properties through plasma activation, photomask technology and ultraviolet light-induced graft polymerization. Based on the antifouling agent poly(2-methacryloyloxyethyl phosphate choline) (PMPC) and the antibacterial agent quaternized poly(N,N-dimethylamino)ethyl methacrylate (QPDMAEMA), two different micropatterning structures have been successfully prepared: PP-PMPC-QPDMAEMA in which QPDMAEMA is the micropattern and PMPC is the coating polymer, and PP-QPDMAEMA-PMPC in which PMPC is the micropattern and QPDMAEMA is the coating polymer. The composition, elemental distribution and surface morphology of PP-PMPC-QPDMAEMA and PP-QPDMAEMA-PMPC have been thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. Compared with pristine PP, the two types of micropatterned PP films exhibit good surface hydrophilicity as characterized by water contact angle measurements. The results of anti-protein adsorption, platelet adhesion and antibacterial evaluation showed that PP-PMPC-QPDMAEMA and PP-QPDMAEMA-PMPC had good anti-protein adsorption properties, especially for lysozyme (Lyz). They can effectively prevent platelet adhesion, and the anti-platelet adhesion performance of PP-QPDMAEMA-PMPC is slightly better than that of the PP-PMPC-QPDMAEMA sample. The sterilization rate of S. aureus and E. coli is as high as 95% for the two types of micropatterned PP films. Due to the rational design of micropatterns on the PP surface, the two classes of dual-functional PP materials realize both the resistance of protein and platelet adhesion, and the killing of bacteria at the same time. We anticipate that this work could provide a design strategy for the construction of multifunctional biomedical polymer materials.


Assuntos
Incrustação Biológica , Polipropilenos , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Incrustação Biológica/prevenção & controle , Escherichia coli , Polímeros/química , Polímeros/farmacologia , Polipropilenos/química , Polipropilenos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
15.
J Food Prot ; 85(5): 792-797, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35146521

RESUMO

ABSTRACT: Salmonella can be isolated from animal food, ingredients, and animal food manufacturing surfaces. There are limited data regarding the sanitation of animal food manufacturing surfaces. This experiment evaluated the effects of nine chemical treatments on reduction of Salmonella Typhimurium contamination on various manufacturing surfaces. This experiment was a 9 × 5 factorial with nine chemical treatments and five surfaces. The nine chemical treatments included one with no inoculation or sanitation treatment (negative control). In the other eight treatments, inoculation with Salmonella Typhimurium was followed by either no sanitation treatment (positive control) or treatment with ground corn; liquid commercial formaldehyde; liquid food-grade sanitizer; liquid medium chain fatty acid blend of caprylic, caproic, and capric acids (MCFA); dry commercial calcium propionate; dry commercial acidulant; and dry commercial benzoic acid. The five surfaces included stainless steel, plastic, polypropylene tote bag, rubber belt, and rubber tire. Plastic had higher levels of Salmonella in the positive control than did the polypropylene tote bag; other surfaces had intermediate levels (P < 0.05). Surfaces treated with formaldehyde had no detectable Salmonella after treatment, and surfaces treated with MCFA had at least a 4-log reduction compared to the control (P < 0.05). The dry acidulant was the most effective dry sanitizer tested, but it had no impact on Salmonella concentration on rubber tires (P < 0.05). Whereas liquid sanitizers were the most effective in this experiment, they have limitations for use in dry bulk systems. In summary, formaldehyde, food-grade sanitizer, and MCFA were the most effective chemical treatments to reduce Salmonella surface contamination. Surface type can also influence Salmonella mitigation strategies; specifically, stainless steel and plastic can be more challenging to sanitize within animal food facilities.


Assuntos
Salmonella typhimurium , Aço Inoxidável , Animais , Formaldeído/farmacologia , Polipropilenos/farmacologia , Borracha/farmacologia
16.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204668

RESUMO

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Portadores de Fármacos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias/tratamento farmacológico , Poloxâmero/química , Poloxâmero/metabolismo , Poloxâmero/farmacologia , Polietilenoglicóis/metabolismo , Polímeros/química , Polipropilenos/química , Polipropilenos/farmacologia , Propilenoglicóis/metabolismo , Microambiente Tumoral/efeitos dos fármacos
17.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281198

RESUMO

Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.


Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Cobalto/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/química , Regeneração Nervosa/fisiologia , Óxidos/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polipropilenos/química , Polipropilenos/farmacologia , Próteses e Implantes , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
18.
Viruses ; 13(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201615

RESUMO

Bacteriophages (phages) are a specific type of viruses that infect bacteria. Because of growing antibiotic resistance among bacterial strains, phage-based therapies are becoming more and more attractive. The critical problem is the storage of bacteriophages. Recently, it was found that bacteriophages might adsorb on the surfaces of plastic containers, effectively decreasing the titer of phage suspensions. Here, we showed that a BOA nanocomposite (gold nanoparticles embedded in polyoxoborate matrix) deposited onto the inner walls of the containers stabilizes phage suspensions against uncontrolled adsorption and titer decrease. Additionally, BOA provides antibacterial and antifungal protection. The application of BOA assures safe and sterile means for the storage of bacteriophages.


Assuntos
Anti-Infecciosos/química , Bacteriófagos/metabolismo , Boratos/química , Materiais Revestidos Biocompatíveis/química , Ouro/química , Nanocompostos/química , Polipropilenos/química , Adsorção/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Boratos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Armazenamento de Medicamentos , Ouro/farmacologia , Nanopartículas Metálicas/química , Polipropilenos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
ACS Appl Mater Interfaces ; 13(26): 30317-30325, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180223

RESUMO

Influenza A viruses (IAV) and SARS-CoV-2 can spread via liquid droplets and aerosols. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of these viruses. However, IAV and SARS-CoV-2 are stable for hours on various materials, which makes frequent and correct disposal of these PPE important. Metal ions embedded into PPE may inactivate respiratory viruses, but confounding factors such as adsorption of viruses make measuring and optimizing the inactivation characteristics difficult. Here, we used polyamide 6.6 (PA66) fibers containing embedded zinc ions and systematically investigated if these fibers can adsorb and inactivate SARS-CoV-2 and IAV H1N1 when woven into a fabric. We found that our PA66-based fabric decreased the IAV H1N1 and SARS-CoV-2 titer by approximately 100-fold. Moreover, we found that the zinc content and the virus inactivating property of the fabric remained stable over 50 standardized washes. Overall, these results provide insights into the development of reusable PPE that offer protection against RNA virus spread.


Assuntos
Vírus da Influenza A/fisiologia , Nylons/farmacologia , SARS-CoV-2/fisiologia , Têxteis , Inativação de Vírus/efeitos dos fármacos , Zinco/farmacologia , Adsorção , Animais , Chlorocebus aethiops , Fibra de Algodão , Cães , Células HEK293 , Humanos , Vírus da Influenza A/efeitos dos fármacos , Íons , Células Madin Darby de Rim Canino , Polipropilenos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células Vero , Carga Viral , Óxido de Zinco/farmacologia
20.
Sci Rep ; 11(1): 10798, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031478

RESUMO

Two synthetic approaches were explored for modification of the polyolefins polyethylene/polypropylene (PE/PP) to form contact-active nonwoven materials. In the first approach, polymer surfaces were activated by O2-free air-ozonolysis, and then the active agent (trimethoxysilyl) propyl-octadecyl-dimethyl-ammonium chloride (C18-TSA) was covalently bound. In the second approach, the active agent was directly conjugated to the commercial 'finishing' that was then applied to the polymer. The chemical, physical and microscopic properties of the modified polymers were comprehensively studied, and their active site density was quantified by fluorescein sodium salt-cetyltrimethylammonium chloride reaction. The antimicrobial activity of the prepared nonwovens against Bacillus subtilis (Gram-positive) and Salmonella enterica (Gram-negative), and their stability at various pHs and temperatures were examined. The two approaches conferred antimicrobial properties to the modified polymers and demonstrated stable linkage of C18-TSA. However, the performance of the nonwovens formed by the first approach was superior. The study suggests two feasible and safe pathways for the modification of polyolefins to form contact-active nonwoven materials that can be further applied in various fields, such as hygiene products, medical fabrics, sanitizing wipes, and more.


Assuntos
Antibacterianos/síntese química , Bacillus subtilis/crescimento & desenvolvimento , Polietilenos/síntese química , Polipropilenos/síntese química , Salmonella enterica/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Cetrimônio/síntese química , Cetrimônio/química , Cetrimônio/farmacologia , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Ozônio/química , Polietilenos/química , Polietilenos/farmacologia , Polipropilenos/química , Polipropilenos/farmacologia , Compostos de Amônio Quaternário , Salmonella enterica/efeitos dos fármacos , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...